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ABSTRACT

We consider general linear parabolic equations in a given time dependent domain
and we describe a general class of Galerkin-type approximations which are continuous
with respect to the space variables, but whichladmit discontinuities with respect to
time at each time step. Unconditional stability is proved and a general error estimate
is established. These results are applied to certain finite element methods based on
space-time finite elements.
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EXPLANATION

Most numerical methods for parabolic equations are based on a space discretization
which is independent of time and are not appropriate for problems in a variable domain.
These problems can be approximated by using finite elements which are relative to both the
space and time variables; such elements have been used for free boundary problems in heat
conduction (Stefan problem) and fluid flow, but no mathematical results have been proved.
In this report, we consider the case of a given moving boundary and we prove stability
and convergence with error estimates for a general class of Galerkin-type methods which

includes the case of space-time finite elements.
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GALERKIN-TYPE APPROXIMATIONS WHICH ARE DISCONTINUOUS
IN TIME FOR PARABOLIC EQUATIONS IN A VARIABLE DOMAIN

®
Pierre Jamet

1. Introduction

Most numerical methods for parabolic partial differential equations are based on a
space discretization which is independent of time; this is the case for most finite ele-
ment or Galerkin-type methods which have been studied in recent years ([2], (6], [7], [21],
{23}, (241, (26], (27]). These methods are not appropriate for parabolic problems in time-
dependent domains, in particular for time-dependent free boundary problems.

In order to solve such problems, numerical methods based on space-time finite ele-
ments, i.e. on finite elements which are relative to both the space and time variables
have been proposed and numerically tested ([3], [4], [11), [12]). Let us notice that

*
z but only in

space-time finite elements have been first considered by J. T. Oden [19](.
the case when the elements are the Cartesian product of a space element by a time interval,
which yields a space discretization which remains fixed in time.

Another finite element method to deal with variable domain has been studied by
M. Mori [16], [17] for the Stefan problem; it is based on finite elements in space which
depend continuously on time. This meth>d is indeed a particular case of the generalized
Galerkin method studied by Mignot ({15]; in the same paper, Mignot studies other methods
for paraﬁolic equations in a variable domain: method of fixed auxiliary domain, method
of elliptic regularization. Let us finally mention the finite difference methods studied
by the author [9) for parabolic equations of order 2 which can degenerate or admit singu-
larities at the initial time as well as on the boundary of the variable domain.

In the present paper, we consider general parabolic equations in a given time~
dependent domain and we present a general class of Galerkin-type methods with applications

to space-time finite elements. These methods are different from those which have been

* visiting from Centre d'Etudes de Limeil, Commissariat & 1'Energie Atomigue, B. P. 27,
94190-Villeneuve St. Georaes, France.

®* The author is indebted to Professor M. Zlémal, University of Brno, for this reference.
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studied previously (including the space-time finite element methods of [3], (4], [11],
[12]): the approximations are continuous with respect to the space variables for each
fixed time, but they admit discontinuities with respect tc the time variable at each time
step; in particular, the elements can be chosen arbitrarily at each time step with no
connection with the elements corresponding to the previous step.

For more simplicity, we first consider a model problem: the Dirichlet problem for
the heat equation. This problem is presented 1ln Section 2; we derive an integral relation
which is satisfied by the solution and which is the basis of the numerical methed. In
Section 3, we describe a general class of time-discontinuous Galerkin-type approximations
and prove unconditional stability; the discontinuities are treated as in the discontinuous
finite-element methods cf Reed and Hill [22] and lesaint and Raviart [13] for the stationary
neutron transport equation; the same technique has also been used by Pini [20]. In
Section 4, we establisn a general error estimate. In Section 5, we apply the previous re-
sults to space-time finite element methods; the order of accuracy can be made arbitrarily
high by choosing finite elements of corresponding order. In Section 6, we give a simple
example in the one-dimensional case; we give the explicit form of the discrete equations
for rectangular space-time finite elements of order 1, which yields a finite difference
analogue of our method. Finally, in Section 7, we extend the method and the previous re-

sults to general parabolic equations of order > 2 with general boundary conditions.
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2. A model problem

Let us consider a time interval 0 <t < T and let Q(t) be a bounded domain in

nlm, m positive integer, which depends continuously on t ¢ [0,T] . Let TI(t) be the

boundary of {Q(t) and

&
T

Ly

jq} is a (m+l)-dimensional domain in nzm x R and ET is its "lateral" boundary. We

{,t) e Qe), 0<t <D} ;

n

n

{x.t): x e P(E), O<t<Tl}

assume that XT is piecewise smooth. For simplicity, we will use the same notation (t)
for the domain Q(t) c N{m and for the corresponding section of 3&, i.e. the set
{(x,t); xe Q(t), t fixed}
0 3 : 2 [0] 2
Let f and u be two given functions, f ¢ L (& T), u € L°(2(0)), and let A

denote the lLaplacian operator with respect to the space variables. We consider the problem

du g
a) 3 - M = £ in j'l‘ ;
(2.1) b) u=0 on I, .
0

c) u=u in f(0)

For the existence and uniqueness of a classical solution u, under suitable hypotheses
on f and uo, see (8], [9): for the existence and uniqueness of a weak solution, see
{14), [15). 1In this paper, we will assume that the solution wu is sufficiently regular
for the validity of the error estimates.

We will use the following notation:

d = Max{diam Q(t); 0 <t < T},

2 . 2
(".)Q(t) = inner product in L (Q(t)) ,
: 2
l'ln(t) = norm in L™ (Q(t)) ,
((-,°))G = inner product in L2(G), where G 1is a subdomain of J’T B

Il-l]c = norm in LZ(G)

The same notation will be used for vector valued functions in (LZ(G))m .  Thus,
((grad ¢, grad J‘))G = f] grad ¥ * grad ¢ dxdt ,
G

-3~




where ¥ and ¢ are two arbitrary smooth enough functions.

Now, let TO and 11 be two arbitrary numbers such that O < % < TS T and let

G= G(ro,tl) denote the intersection of JrT with the strip T <t < Ty 1 .e-

G= {(x,t); x € Qt), Ty % 11) . Consider the bilinear form

(2.2) QG(w,w) = ~((w.w)) + ((grad ¢, grad w))G + (\lmv)n (V@)

L' G (x,) 9(10)

1

Let &(G} be the space of all Lipschitz-continuous functions v defined on G (closure of
G) and which vanish on the lateral boundary of G, i.e. on ZT NG . Then, a classical
integration by parts shows that the solution u of problem (2.1) satisfies the integral

relation
(2.3) BG(u,v) = ((f,w))G for all ¢ € $(G) and for all G = G(‘:O.rl)

with. 0 < v <71 <T.(.)

This relation is the basis of the numerical method described in the following section.

4*®*) It is possible to relax the hypotheses on the function ¢ in relation with the

regularity of u . This question is considered in Section 6 where a precise vari-
ational formulation is ¢’+v~n for more general parabolic problems.




3. Discontinuous approximations

n
Let {t; 0 <n <N} be a finite sequence of real numbers with t2=0, t" <™
N : n + > — — -
g v =T. zat 2R e0it™, @ ocit’ ™) ma E=E" - F® = Lkl x 6 BEY .
n n+
t <t<t 1) (see Figure 1).
t
N
? Q
T |
n+l
]
tn+1
P
n
Q
~
0 : 0 ; SR
Q
Figure 1: The discretization of the domain jT with
respect to time {one-dimensional case)

Let ¢ be a finite dimensional subspace of &(G'), for 0 <n < N-1, and let V_ be |
the space of all functions vh defined n & T such that their restriction to each E;n |
coincides with the restriction to én of a function \ah € @: .  The functions vh € vh

i ; . ; ; n : : n n
are in general discontinuous at the time t = t ; we will use the notation v_ = vh(°,t )

h

n+0 . n ,
for 0 <n <N and %W = lun{vh(-,t +€); € >0, e » 0} for 0 <n < N-1; it follows
from the definition of the space Vh that we have v;: = lim(vh(‘,tn-v_); £ >0, £ > 0}

for 1 <n<N.

We approximate problem (2.1) by the following problem which is a discrete analogue
0 0

of (2.3). Discrete problem: Find uh € Vh such that uh =u and |
(3.1) lGn(uh,wh) = ((f.wh))Gn '

heo: and for all n, 0 <np <N-1.

We will prove the existence and uniqueness of the solution w of Problem (3.1); for

for all ¢

that purpose we need two preliminary lemmas.
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For each n, 0 <n < N-1l, there corresponds to each v, € V a unique function

h h
wh - q(n) vh € 0: which coincides with v“ on E;n . Let
(3.2) Bn( v.) = 8 ( q(“)v ) for all v € ¥
“n*'n & on h'’ h & h

n x L i
8 (v ) is a bilinear form defined on V. %X V. and we have
h h h

For all n, 0 <n < N-1, for all u“ € Vh and all vh € Vh i

n ) vy
. = ~ e Yo d u, gr +
(3.3) 8 (uh,vh) ((uh, 3t Yn!) ((grad u. grad vh)) -
G G
n+l n+l n n+0
+ ( P ) = QL v ) .
B e gl
n = 2 1, n+1,2 1,..n ;2 1 n+0  n 2
(3.4) B (v ov,) || graa Vol 2 * 3l Yo Daes — 3 ]vh | w5 L
G 7 Q Q
: (n) N ; —n
Proof: For each Vi the function '"h = q vh is continuous on G , hence
n n+0 -
vh(-,t. ) = vh and formula (3.3) follows at once from (2.2). Then, we deduce (3.4) by
taking vh =u. integrating the first term in the right hand side of (3.3) with respect

to t and using the identity

(vn vnm) e ivu l2 L 1 lvnooiz 1 |vn R 12 =
’ = ) 3 U, A - s
h " h Qn 2 h o 2 h " - h h Qn

We will also need the following elementary lemma.
Lemma 3.2

let a,b,c be three nonnegative real numbers such that az < b2 + ac . Then,
a<b+c.
Proof: We have a < —;-(c + (¢ + 4b2)1/2) and (c2 + 4b2)1/2 <c+2b. -

Theorem 3.1

“The discrete problem (3.1) admits a unique solution u which satisfies the estimate

-




=

——————

2 1, ns2 1,0 2
(3.5)  llorad w | s3lanl® < U]+ /2 allell T
"n gro,e 2 Mg 20 g0 G(0,t™
for all n, O <n <N, with d = Max {diam Q(t)} .
0<t<T
Proof: For each n, (3.1) is a system of linear algebraic equations with a square matr:ix

: Y ¢ n :
whose order is equal to the dimension of the space @h . Hence, the existence of the solu-

tion uh will be a consequence of its uniqueness.

Taking wh = q(“)uh in (3.1), using (3.4), summing with respect to n and applying

Poincaré's inequality, we get

2 1 n,; 2
| graa wu || + = |u | 5
' o 2 R gR
1, 6,2
s=ja |, # el fall <
s a° e, % P gro.ah
1, 0,2 ,
i'“‘ u | +allf |l || grad u || .
i 2° c(o,t") 1Y 0.t

The estimate (3.5) follows at once by application of Lemma 3.2 with

2 B 2 1/2
a= (Jlaraa u 1>+ 3lplPDY?
G(0,t ) Q
- b= L]0, ana c=allell .
V2 Q G(0,t)
The uniqueness of u is a consequence of this estimate. .
Remark 3.1: The equations (3.1) are equivalent to
(3.6) 8 (uh,vh) = ((f,vh))J g for all vy € Vh ‘
N-1 "
with S(uh,vh) = z & (uh,vh) . In (3.6) the index n does not appear. However, the
n=0

form (3.1) is more convenient.
Remark 3.2. For each n, the space o: can be chosen arbitrarily with no relation with

for v ¥ n; in particular, the spaces 0“ need not have the same dimen-

the spaces s h

hl

sion for different values of n .

= -
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Let us also notice that unlike other methods, the present method does not require a

preliminary approximation of the initial function u0

we take u:‘uo.




4. General error estimates

In this section, u 1is the solution of the exact problem (2.1), u is the solution
of the discrete problem (3.1) and Vo is an arbitrary function in the finite dimensional

space V

h We estimate the error u - uh in terms of u ~ vh for arbitrary v, € V

h h
In later applications, we will choose i equal to a certain interpolating function of u
(see Section 5); thus the problem of estimating u - u is reduced to the problem of

estimating the interpolation error,

We will establish the following result.

Theorem 4.1

let u be the solution of problem (2.1) and u, be the solution of the discrete

Eroblem (3.1}, Then,

1 n n
|lgrad (u-u ) || +— |lu - u | <
h G(O,tn) /2 h ﬂn
el 2 172 g
(4.1 <v2a§ |5 v 17 + V2 |lgrad(u-v) || Lt
v=0 G G(O,t )
n~1
+ v
+ 2  Max w’ - v;[ +2 § lv: s Vhl o
l1 <v<n v v=1 19}
— Q
-
1 for all functions vy € Vh and for all n, 1 <n <N
1 For the proof of this theorem we will need the following lemma.
Lemma 4.1
Let a" and bn, 1 <n <N, be two sequences of non-negative real numbers which
E satisfy
' n 2 2 n n it VR
(4.2) @M%+ ®*% < aa" +8" + J yb’, forall n,
v=1

v :
where a,8 and y for 1 < v < N-1 are non-negative real numbers. Then

K n-1 v
Y2 +8+ § y) .
v=1

(4.3) a +b

A

-9~
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Proof of lemma 4.1

2
let cn = ((an) + (b“)z)l/2

. n n n
Finally, we have a + b < v2 ¢

Proof of Theorem 4.1

Taking G = Gn

G

Hence, we have

(4.5) 8 p(uu ,u-q(n

g h

for all Y € vh 3

st 82 oy -
Let (u Jh, u vh)

£l

(3.2},

n+0 n n
u =u = u(*,t) . Hence,

g _ftu - u
n

Brn(‘ruh, u-q

The formulae (3.3) and (3.

(4.5) yields

Then, (4.2) yields
n 2 g b Sl
te) < {atBlc™ ¥ F ¥ e s for Txsn <N .
v=1
let dn, 1 <n <N, be the sequence of non-negative real numbers which satisfies
i
n 2 n n=1 v
(4.4) @H° = (atp)d" + ) ¥y &, for 1 <n <N,
v=1
We have cl §>dl =a + B8 and a" >a + 8 for all n By mathematical induction we
prove that " idn for all n: assume ¢’ < @’ for v=1,2,...,n-1; then q(cn) ig(dn)
3 2 g - x :
with g(y) =y - (a+B)y: since g(y) 1is increasing for y > a + 8, we deduce cn idn c
+

On the other hand, we have g(dn) < g(dnﬂ) for all n, therefore a" = a" i for all =

; ) v n
and (4.4) yields after replacing d by 4d

n iy v
d <a+ ] + z Y 5
=1

< V2 dn, which ends the proof of the lemma.

in (2.3) and subtracting from (3.1), we get

n
h'wh) =0, V vh € Oh
o (n)
uh) = @n(u u, u-q vh) ’
G
|
(n) : : I Cachie ‘
vh), which is an extension of the definition !

4) of Lemma 3.1 are also valid for Gn(u-uh,u—vh) with




2 1 n+l n+l,2 1, n n 2
||grad(u-uh)|lGn % = | = Inn+1 - Elu o |Qn i
1 lun+0 4 un IZ *
2 h h Qn

9
= - ((u-u , v (u—vh))) - ((grad(u—uh), grad(u-vh))) +

n
h G G
o (un+1 . n+l n+l vn+1) _ (un _.n un - vn) -
by BF h n+l Un’ h' n
Q Q
+ (un -, vn+o -v™ , for 0 <n <N-1.
h h h Q" il e

By summation and by application of Poincaré's inequality, we deduce:

n-1
2 1, n n 2 1 v+0 v 2
lgrad (u-u ) || - L W TR
h G(O,tn) 2 Sh Q" 2 VED h nv
n-1
2 20 EAD
(4.6) < || grad(u-u) || ac § i ==w-vor it + |[grad (u-v, ) || +
h G(O,tn) V=0 at h Gv h G(O,tn)
R 1#’*0 vl
fi = = - 3
R g™ va1 Hets b g¥
for 1 <n <N .
Now, we will make use of Lemma 4.1. Let
n n i n n
a =||lgrad(u- ) || , b ==—|u -u |
W o™ /2 W
n-1
n 3 Z JY/2
o' =ac ) S | F07T + |lgrad v |l '
wg o0 B Tg¥ n T at0,£™
n v Vv n n+0 n
" = V2 Max |u -V, I and Yy = V2 Iv -V, | .
1<v <n h Q¥ h hign
Then, (4.6) yields
n-1
(@M% <o + 8"+ §J y'bp’, for 1<n<N.
v=1
Since the sequences ("} and {8™)} are increasing, we deduce: i
Lo R ouw
W2 ¢ M2 <coa'a®+ 8D +] Yb, for 1EnSLEN .
2 v=1

1}~




Applying Lemma (4.1) we get:

n L L [} L
A+ b <2 (o +8 ¢ ] YY) for 12mzl
v=1

The estimate (4.1) of Theorem 4.1 follows by taking n = 2

Let us notice that formula (4.5) also gives an estimate for the expression
nk v+0 v 2
2 |u -u “ which involves the jumps of the function wu_ .
- h h
v=0 v
Q
The following theorem is a variant of Theorem " O

Theorem 4.2

0 0
Assume that V, n C (j,r) is non empty (where C (},r) is the space of all contin-

uwous functions defined on & T) . Then, we have the estimate
{{grad (u-u )|| 5 = |un—u:| <
h o, t™) o) Q"
3
(4.7) <vVza s vl + /2 llarad (u-v )| +
& n T 60.eM b e0,tM

n n
£ 3 - Vh[‘n 2

(an)2 4 (bn)2 < a"a" + énhn, where an, b" and o
are defined as in the proof of Theorem 4.1 and é e ]un-v:| oA $ Tollems A" & B"
< 2"+ 8T . 2 . 1
Notation: We introduce now certain general notations which are needed in the ‘ollowing
section.
xl,xz,...,xm = upace-coordinatcs,

for all functions vh IS Vh n CO(JT) »q__mi for ill_ﬂ' 1o < N

- Y
Proof : In this case we have \v

h+° - vl =0 . Then, (4.6) yields

5 = (3grdyseerrdy) = multi-index with 3,3 0eeedp 20

3= Gyeeeeedg) o

5] = LZO Bele 13°) = 121 13,1

-12-




b 3
adu = al3lu/ae® Bxll i R

SRR Ty

1] L] j j
3j u= a'j 'u/axll des 30 .
m

G) T

e o+ e g

I'Dsu]lc = ( % llajullz 1/2, for any integer s > 0 and any G < &

jl=s

= = j' . 2 1/2
L PR (|j-§.s'a ul-ot) g )27° forany £, 0<t<rT.

The two foregoing expressions are defined provided

wen W ) com: @)
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5. Space-time finite elements

5 < x o n .
In this section, we make a specific choice for the spaces @r; we use space-time
1

finite elements as in (3], (4), (11], [12]. For simplicity, we assume that the domain
$ P is polyhedral; if not, we should use curved finite elements near the boundary.
5.a) Simplicial elements
" " : n
Let h be a "small" positive number and for each n, 0 <n < N-1, let J h be a

finite set of (m+l)-simplices K which satisfy the conditions

(5.1) 6" = f{uk; Ked
(5.2) h{K)y < h, For all K € 3J v
where h(K) denotes the diameter of K ,

0 o 0
(5.3) KoRi=¢, ¥ KK e T ;:, where K denotes the

interior of K ;

(5.4) If a vertex of K belongs to K', then it is also a
g n
vertex of K', for all K, K' e :Ih .
EA
+1 -
"
n
t

Y

0 X
n0

Figure 2: A trianqulation of the subdomains Gn—1 and Gn in the

one-dimensional case.

-14-
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n.
h h’

We will denote J = {u J 0 <n <N-1}. Let k be an integer, k > 1; let P

be the set of all polynomials of degree < k with respect to the variables t, xl' ~

y i Pt n
and let Pk(x) be the set of their restrictions to K . For each n, we choose °h

2 . . P ¢ " .

equal to the space of all continuous functions defined on G which vanish on the lateral
n B S ; !

boundary of G and whose restriction to each element K coincides with a polynomial of

degree < k, 1i.e.

€ Q(Gn). ¥

n
(5.9) °h = {wh. ¢ iz

p n
¥ € k(K),thsh}.

For the statement of the next theorem, we need the following definition. Let EK
denote the set of all the edges of a (m+l)-simplex K, with m+l = p > 2, and let

8(D,D') denote the angle of two arbitrary straight lines D and D' in wn® .

Definition 5.1

The condition angle of a p-simplex K 1is the angle

(5.6) €(K) = Max min 6(D,D')
o
per? D <Eg
Remarks: For all non-degenecrate p-simplices K, we have 0 < 6 < n/2 . The condition

angle 6(K) approaches n/2 if and only if all the edges of K are almost parallel to a
same hyperplane. 1In the case p = 2, K is a triangle and 6(K) is equal to one half of
the largest angle of K .

Theorem 5.1

Let the space ¢: be chosen according to (5.5). Let u be the solution of problem

(2.1) and be the solution of problem 3.1l Assume u € Hl(} ¥ 0 CO(IO,T]: H!(Q(t)))
LR :

where 2 is the smallest integer such that 2 > k+#l1 and ® > (m+l)/2 . Assume that the

discretization of J'r satisfies the conditions

(5.7) h<1l, N <) ,
(5.8) 6(K) < 60 < x/2, £or a1l K & 3h ¥
where ) and 00 are given positive constants. Then,
n . n k
(5.9) |lgrad (u, -w) || o b ety o LYN .
G(0,t ) Q

«18-




for 1 < n <N, w;x_t}l

2
- -1 s s
Yy=°¢C ) ((cos 00) l‘h u]l B + A Max - lD u(‘,t)lﬂ(t)) .
s=k+1 G0t ) O<tet
where C 1is a positive constant which depends only on m, k and d . Moreover, we have
the following estimate for the jumps of wu,
e S R k
(5.10) t] by -9l g eyn

where C' 1is an absolute constant.

Proof : For each element K, 1let 9 (K) be the set of the points of K whose barycentric

coordinates with respcect to the vertices of K are multiples of 1/k and let “K de-

: 3 : - : Q.= :
note the interpolation operator which associates to each function ¢ € C (K) the unique

function ka ¢ Pk(h’) such that YIK\-“- = ¢ at all the points of J(K) (see [18], [5])).

. . L 3 s (¢]
Let ﬂh denote the interpolation operator which associates to each function ¢ € C (J T)

€V such that 1. ¢ = ILr ¢ in the interior of K, for all

th ique f ti N, ¢ ¢
e unique function h ¥ h h KK

K ¢ S'h, where ry denotes the operator of restriction to K . Note that the interpolated

g iy . : ; 4 n-1
function Hh¢ is in general discontinuous at the time t = tn since the sets J h
and J : are independent.

We will use the estimate of Theorem 4.1 with vh = ﬂhu (note that Hhu is defined

since the hypothcses of the present theorem together with Sobolev's imbedding theorem im-

i is i s ¥ . L e SP . .
ply th.t u is continuous on '1‘) Let 3h’n (resp 3h,n+0) denote the set of all

m~simplices K' which lie in the hyperplane ¢t = t" and which are a face of an clement

Kel3l :-1 (resp. 3’:) .+ Using the inequality
+0 v+0 v v
b ol zlg” 20l by cu]

we deduce from (4.1):
1
”qn‘ad(u—u‘,‘)”&'r * 75 ,u—uhan <

1/2

(5.11) < V2a( | H-;; (u-Ty u)”i) +

K(:}’h

2.1/2

K’ >

+ 72 (] |lgradtu - |
Ked

«16-
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. 1/2
+ 2N 1% ¢ '2 . lu-1t ] 2,0
tsh,v
z . 1/2
+ 2(N-1) Max ( z |u - nhulK') £ '
< e o '
1<v<N-1 K'e 3h,\H>0
: _ Vv+0 S 0
with nhu = (ﬂhu) on each K' ¢ 3h,v+0 %
(*). .
Theorem 2.3 of ([10] yields:
c 2
9 1t k s
<12 —(u- + z ~ S '
(5.12) || getu-nowlf + llgradtu-m ol < 10" ] [Ip%ull,
s=k+l
for h <1 and for all ke J ,
k+1 -
(S.13) u-1 u| r & E.h y |D ul ’
h K 2 - K'
s=k+1
£ <l dl £ k 4 .
or h< and for all K' € J By v 3}"\)40 #
where C1 and C are constants which depend only on k and m . The estimate (5.9)
follows at once from (5.11), (5.12) and (5.13), where N can be replaced by an arbitrary

value of n . The estimate (5.10) is obtained by using (5.9) in the right hand side mem-

ber of (4.6). -

Remark 5.1: The condition (5.8) which was established in [10]is an improvement on the classical con-

dition of zlamal [25] and Ciarlet-Raviart [5]. It is valid for a general class of interpo-

lation operators which contains the operator I, considered above and for general error
N
estimates in the Sobolev spaces wu'q, W integer > 0, 1 < g <« . The same condition

has been established independently from the author by Babudka and Aziz [1] in the particular

case m =1 (the elements K are triangles), k=1 or 2, y=1 and q= 2 .

Remark 5.2: Suppose¢ that the triangulation Uh satisfies the condition
' - ' < < N-
(5.14) J B, 3h,n+0 eTOr 1S m < Nl .

Then, Hhu € CO(I T) and we can apply Theorem 4.2. We get the same estimate as in Theorem

*

™ There is a typographical error in the statement of this theorem: one should recad
- - +

wk bl and wk”"p instead of . ke and wk 1.p .

-l7=

OO o v s Bt T




5.1, but without the hypothesis Nh < X; in the expression of <y, the constant A must

be replaced by 1 (or by h ).

Remark 5.3: The condition Nh < A implies that the average value of the time-steps
should not be too small; it should be at least of the same order as h . In particular,
we can take N = 1, which yields a completely implicit method for the whole domain & P

The advantage of dividing the interval [0,T] intec sub-intervals is to split the global
system of discrete equations (3.1) into subsystems each of which corresponds to one sub-

3 n
domain G .

5.b) Prismatic elements

For simplicity, we will use the vocabulary corresponding to the case m = 2; thus,
we will say "triangle" instead of "m-simplex", "plane" instead of "hyper-plane", "prism"
instead of "hyper-prism", ...

n A n -
For each n, O <n SIN=F, et g h be a finite sect of elements K = Ki' 1 T

which satisfy (5.1), (5.2), (5.3) and the following properties: the section of each ele-

n n n+ . : n+0 n+l
ment l(1 by the plane t = t (resp. t = ¢ 1) is a triangle Ti (resp. Ti ) and
< n n n+1 ; ; . '
the section of Ki by any plane t=constant, t <t <t , 1s a triangle whose vertices
n+0 _n+l n+0 . n+0
are located on three straight segments [Pi Pi 1 where PQ is a vertex of Ti

n+l +1 [ z : g
and P2 is a vertex of T? ; the element Ki 1s a distorted prism (see Figure 3);
1

g r " i + n+
in general, it is not a polyhedral; the triangles T: 9 and Ti are called the bases

n z " . n i
of the element Ki and their vertices are called the vertices of Ki . All the vertices

" +
of the elements K ¢ J : must satisfy condition (5.4). The sets 3’: and J : . are
+
independent; in particular, the set k O of all triangles T: » which are a base of
’
SRS . n+l g
one element K ¢ 3’11 is independent of the set J ﬁ & of all triangles Ti which are
.
=% " : : 4 -
a base of one element K ¢ J : (this is a difference with the continuous firite element
method used in (4); in that method we imposed L = A i “
us v (4) od we impo D 3'h,n) (See figure 4)

lLet k' and k" be two integers, k' > 1, k" >1 . For each element K ¢ J : v
let Qk' k,,(l() be the space of all functions defined in K whose restriction to each
[

section of K by a plane t=constant is a polynomial of degree k' with respect to the

n+0 +
Pn 1

space variables and whose restriction to each edge [Pl )

] is a polynomial of degree

k" with respect to t . We take

-18-
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Pl
n+0
P!.
Figure 3: A "prismatic" element K? (two-dimensional case)
th
t1':4*1 > —9 9> >
P S
tn—-l »—
>
x
0 00
Figure 4: Trapezoidal elements (one-dimensional case)
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n o . : n -n
(5.15) o, = fv,s ¢, € 2(G), Y €0, LK), Ke g
where E denotes the res’ iction to X .
let k = minfk®',k"} . £ be the smallest integer such that £ > k + 1 and
L > (m+l)/2 . let £* be the smallest integer such that 2' > k' +1 and &' > m/2
N n ; n+l n .
For each X ¢ T h’ let h(K) be the diarmeter of K, h'(K) = (t -t ) be the "height"
PR N R . . <
of K and p(K) be the minimum for t <t <t of the diameter of the largest circle
contained in the triangular section of K by the plane t=constant. Let J = w{ T =

0 <n < N-1} . Then, the following result holds:

Theorem 5.2

Let the space 0? be chosen according to (5.15). Let u be the solution of problem
ot SU- oRee— , = GO e S — ===

2 (o} e
(2.1) and uh be the solution of problem (3.1). Assume uelH (ﬁT) 6 © (o7l 8 Q)]

Assume
(5.16) Nh < X,
£5.17) h(K) <h <1,
(5.18) h' (K)/h(K) > Oy ¢
(5.19) p(K) /h (K) 2 0y for all K ¢ Sh s
where 1, UO and al are positive constants. Then,
7 n n k k*
(5.20) \‘grad(u)—u)'l = + luh -u | % <yh + ¥Y'h ’
- G(0,t ) Q

L
yo=c ] Wl o, am
s=k+1 G(O,t )

]

3
y' = act ) Max(|p%u(,0)]
s=k'+1

: <
arey’ U e < €

where € and C' are two positive constants which depend only on m, k*, k*; 00, 01 and

d . Moreover

N-1
(5.21) (] Ju
n=0

n+0

2)1/2
h

k K
- u:l < Colynt 4yt

=20~

. LN 1 B ) CE NN




where C0 is an absolute constant.

For the proof of this theorem, we need a preliminary result concerning the inter-
polation error in each of the elements K .

For each K ¢ 3;:, let J(K) be the set of the points of K which are located in
one of the planes t = £t f%(tn*l - tn) with j integer, 0 < j < k", and whose
barycentric coordinates with respect to the vertices of the corresponding triangqular

section of K are multiples of 1/k' . Let HK be the interpolation operator which

associates to each function ¢ ¢ CO(E) the unique function fo € Qk‘ k,,(K) such that
L4

ka = ¢ at all the points of J(K) . Then, the following result holds.
Lemma 5.1

Suppose that K satisfies conditions (5.17), (5.18) and (5.19). Let £ be the
smallest integer such that ¢ > k + 1 and & > (m+l}/2 . Then, for all functions

L
¢ ¢ H (K), we have

L
k (-
(5.22) llote - n_ wff, <ch I e, .
K ‘K 1 bl K

where C is a constant which depends on m, k', k", 00 and o©

& 1

Proof of Lemma 5.1

Let "k(K) be the space of the restrictions to K of all polynomials of degree < k
with respect to the variables t, Xy ooees xm . The space pk(x) is invariant under the
interpolation operator HK . Hence, applying Lemma 2.5 of [10] which is a variant of
Lemma 7 of Ciarlet-Raviart ‘[5], we get

- s L
(5.23) [lote - n el <coxy § |Ioell, ,ve e B (x)
K ) A | 2 K
s=k+1
where CI(K) is a constant which depends on the element K and on the operator nx s

Let us assume h(K) = 1; then, we have p(K) > % and h'(K) > o, . The set § of

all the elements K which satisfy these conditions is compact. Taking the maximum of

CI(K) for all K ¢ X we can replace CI(K) in (5.23) by a constant C1 which depends

only on m, k', k", % and °l . The estimate (5.22) for h <1 follows by a simple

change of scale.

SN

PO——




Proof of Theorem 5.2

3 A ; - 5 (o}
Let nh be the interpolation operator which associates to each function vy € C (& T)

the function Hhv € vh such that ﬂhw = nKer in the interior

of K, for all K ¢ 3h . Theorem 4.1 with vh = Hhu yields (5.11) as in the proof of
Theorem 5.1. The estimate (5.20) follows by application of Lemma 5.1, of the estimate
(5.13) with k' instead of k and of condition (5.16). Then, the estimate (5.21) follows

from (4.6).
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3

6. An example

In this section, we give an explicit expression of the discrete equations in a
simple case: uniform rectangular grid, approximation of degree 1. Thus we get a finite

difference scheme which is a particular case of our method. We will assume f = 0 .

. S +
Let K:-l and K: be two neighbor rectangular elements with vertices P?_l, P?_i,
n n+l n n+l n n = T n+l T
Pi' Pi - Pi+1' Pi+1 where Pi = (xi, €, X X, =X, =% g A%, t t = At .
n n n n+0 n+0 ; n
= = = = 4 + ; > -+ a
Let u, uh(Pi) u, (x,) and uy NN ER lim { up (x, 67+ €) £ >0, =30}
In each rectangle Kz, uy is linear with respect to each variable x and t separately
; . +0 + +
and uniquely determined by the four values u?+0, u:+1 ,u? : and u:+i by means of the formula
- -~ n+0 PN -~ n+0 T u+ 1 A A n+1
- = - - - . + - ’ + 8
(6.1) uh(x,t) (1 x) (1 t) ug + x(1 t) Ui (1 x]t ug x t Uiy

where x = (x - xi)/ Ax and t = (t - tn)/At

3 n ; ;
At each time step, the values u; are known for all i and we must determine the

values u?+o and u:+1 . The corresponding equations are obtained by writing the integral
relation (3.1) for linearly independent test-functions wh. For example, we can take,. for each
i, the two test functions ¢;i'1) and W;i'Z) such that
1 if P
i
v;i")(p) = -1 if P = p?*l

5 ;
véi' )(P) = i n+l
0 at all grid-points P # Pi

Thus, we get the following equations.

1, n+0 n 2, n+0 n 1, n+0 n
(6.2) (Gui,g ~ Yiep) Y3y mu) ¢ a0 - ug 1)) /8 +
1l  n+l n+l n+l n+0 n+0 n+0 2
oty TE Ny Tt T Mgy R M gl =
1, n+1 n+0 2 . n+l n+0 1, n+l n+0
(6.3) (G, = v * P W) e 6(Wi-y ~ vy /8t -
X
= (FDO _ 5 nt0 4 yn+0 2 (yn+l _ o, ntl n+l 2
3(ui4) = 2uf uity) + ¥ (ui+1 2u1 + “1—1))/(AX) -0 .
33w
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7. General parabolic problems

In this section, we extend the numerical method described in Section 3 to more general
parabolic problems. Some new notations are introduced; the others are the same as in the

preceding sections.

7.a) The continuous problem

We consider problems of the form

a) S - Au=f in & T
(7.1) b) Bu =0 on L‘T
o] o
¢) u=ugyg in Q(0)

where A 1is a differential operator of order 2p with respect to the space variables,
¥ positive integer, and B 1is a boundary operator.

We will give a variational formulation of problem (7.1) which is a generalization of
the integral relation (2.3). For each t ¢ [0,T], let 7 (t) be a subspace of the Sobolev
space #"(2(t)) which is dense in L2(Q(t)) and let ' (t) be the dual space of ¥ (t)

For any domain G = G(ro,rl) = {(x,t); x € Q(t), Ty CE Ly }o 1let

>
€ (G =1 (TO,TI; r(t)) .
' = Lz({o.rl; Y'(t)) = dual space of & (G)
8(G) = {v; v € €(G), %’4 e €'(6)}
i
Let " .||P(G) denote the norm in & (G) defined by
3 12,172 : o = ia .
Hw "5 (@) ( Z ” 3 ¢||G) , with j (Jl,...,)m) ’

3'l<w
for all ¢ ¢ g2 (G)

Let ((-,-))G denote the duality between € (G) and £€'(G) obtained by extension
of the inner product in LZ(G)

We have £ (G) C LZ(G) c'(G) and, by a lemma of Lions [14], 8 (G) c Co([ro,tll :

Lz(ﬂ(t))) .




Let us assume A ¢ £(&(G), €'(G)), i.e. A 1is a linear continuous
operator from & (G) into & '(G) and let us define
(7.2) aG(w,v) = ((Aw,¢))G ,for all y and ¢ in g (G)

aG(-,-) is a bilinear form defined and continuous on el(g) x egl(G) .
Assume that it satisfies the two following properties.

Uniform continuity:

(7.3) lagtv.ed | = Mllwll, (ol ell g (g -

for all y and ¢ in &€ (G) and for all G, where M is a constant indepen-

dent of G .

Uniform cocrcivity:

12 i
(7.4) agle.e) + sllelfle > nllell, )

for all ¢ ¢ € (G) and for all G, where & and n are two constants in-

dependent of G . In fact, we will consider only the reduced case 6 = 0
obtained by a standard change of variable u -» u est, g > 0, in (7.1)
Let
(7.5) B (,e) = =0, 2, + aly,e) + (v,9)
G 3t 'G G

:z(Tl)

_(w’¢)9(10)

8 .(+,*) 1is a bilinear form defined and continuous on g(G) x 8 (G) .

G

variational problem: Find u ¢ 8 (& T) such that wu(-:,0) = uo and

(7.6) BG(u,w) = ((f,v))G . for all v ¢ 8 (G)

and for all G = G(to,rl) < dgp -

This formulation is equivalent to the formulation of Lions [14]. For
the existence and uniqueness of the solution, see [14].
A standard integration by parts shows that (7.6) is a weak form of the

differential equation (7.la). As for the boundary conditions, they depend

on the subspace 7 (t) . We give two examples
-25~
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let V¥ (t) = Hg(Q(t)) « Then, the solution u of problem (7.6) satisfies the

Dirichlet boundary conditions

yju =0 on ET s for j=0,1,...,0"1 ,
where Yju(-,t) = Bju(‘,t)/avj denotes the trace of order j of the function u(+,t) on
Fe) <

Example 7.2

A = Laplacian operator. For each t, let T(l)(t) be a

Suppose pu =1 and A
subset of F'(t) and 7 (t) = {¢; v € Hl(ﬂ(t)), ¢ =0 on T(l)(t)} % Let 2;1) =
(1) (2) _ (1) 3
{ur (t); 0 <t < T} and Z o ZT - Z T ° Then, the solution u of problem (7.6)

satisfies (in a weak sense) the boundary conditions

s (1)
u=20 on XT ’

Ju (2)
s\)u+_3—\-l_=0 on ET v

where s, denotes the outward normal speed of propagation of the boundary T (t) and

) 4
-a—: denotes the outward normal derivative of u .

7.b) Discontinuous approximations

Our method of approximation is based on the fact that relation (7.6) makes sense

du

even if we do not assume % e & (G) siace %E does not appear in (7.6). Therefore,

this relation can be used to define approximations which are not in B(JT) %

lLet Gn be defined as in Section 3 and let 0: be, for each n, a finite
dimensional subspace of § (6" . Let Vh be the corresponding space defined as in
Section 3; vh is a finite dimensional subspace of £ (JT) v but Vh Z 8 (JT): if

\.rh € Vh. the function t -+ vh(-,t) . Lz(ﬂ(t)) is in general discontinuous at the times

n
t=t, 0<n<N. As in Section 3, we denote v:

+0 d 5
and v: = lxm(vh(',tn + €); €>0,e+>0) for n=0,1,...,N-1 . The discrete

= "h""n’ for n=0,1,...,N

problem is formulated exactly as in Section 3.

Discrete problem: Find u, € Vh such that u: = uo and

-26-
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(7.7
c"

for all ¢ ¢ On

h h and all n, 0 <n <N-1.

Theorem 7.1 (existence, unigueness, stability)

The discrete problem (7.7) admits a unique solution uy

(uh.vh) c ((f"h)) n

G

Now, we state two theorems which are generalizations of Theorems 3.1 and 4.1.

which satisfies the estimate

for all n, 0<n<N.

Theorem 7.2 (error estimate)

Let u be the solution of problem (7.6)

problem (7.7). Then

/n |l u-u ||
h e (c(o,t™

n
(7.9) <em? 1

v=0

+ (2/r1)1/2 MI[u-vhH

for all functions vh €V

h

Proof of Theorem 7.1

alization of (3.4) in Lemma 3.1.

8w, ,v) >a v |12
h  h h e (Gn)

e (G(o,t™)

1
- '2-|V

-27~

2 1 n;2
(7.8) n|l u || +=]u <
e wioax™y * P
1o 5. 2
< t= |l & =Qz] e
V2 Q° /n G(0,t™)

and uy be the solution of the discrete

¢ L

e A

Mo nd AR
5 vl Gv) a3

v Vv
+ 2 Max Iu -v'| v
l<v< n Q

and all n, 1 <n<N.

Same argument as for Theorem 3.1. We use the following inequality which is a gener-

2
lvpl

1, n+40 2
Yh Q" " EIV . vnl

h h &
Q

. 1
2

n41|2
h nn+1




; n = (n)
with 8 (vh,vh) = g n(vh. q v)

G h

We also use the obvious inequality ||vh” G < ” Vh” £(G)

Proof of Theorem 7.2

Same argument as for Theorem 3.2.

Applications to finite elements

3 . L ' , n ;
As in Section 5, the finite dimensional spaces th can be defined by means of

space-time finite elements. Then, the function v in the right hand side member of (7.9)

h

can be replaced by an interpolate of the solution u and the interpolation error can be

estimated by using standard results of approximation theory.
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